Polymer chemistry and macromolecular engineering Fall 2024 Assignment 4

1) What are the main differences between ionic and radical chain polymerization? (state three differences)

Selectivity

- · Radicals are not selective,
- Electron releasing substituent Y in cationic polymerization,
- Electron withdrawing substituent Y in anionic polymerization

Nature of the propagating species

- Radical polymerization: single species
- Ionic polymerization: multiple (coexisting) species

-BA	-B+A-	-B+ A-	-B+ + A-
Covalent species	Tight/contact ion pair (charges not separated by solvent)	Solvent separated/ loose ion pair	Free ions

Termination

- Radical polymerization: predominantly via coupling (bimolecular)
- lonic polymerization: propagating chains react with solvent, counter ion or something else

Kinetics

• Ionic reactions proceed at a very fast rate compared to radical polymerization and therefore, the reactions rates are irreproducible.

Consider the cationic polymerization of 1,3-butadiene ([M] = 3 M) using AlCl₃ as **coinitiator** and (CH₃)₃CCl as **initiator**. The rate constants for initiation, propagation and termination are $k_i = 60 \times 10^{-3} \text{ M}^{-1}\text{s}^{-1}$, $k_p = 2.5 \text{ M}^{-1}\text{s}^{-1}$ and $k_t = 5 \times 10^{-3} \text{ s}^{-1}$, respectively.

- a) The polymerization of 1,3-butadiene can proceed via two different pathways: 1,2-polymerization and 1,4-polymerization. Draw all possible isomeric repeating units of polybutadiene.
- b) Derive the rate of polymerization (R_p) equation.
- c) Calculate the degree of polymerization of polybutadiene. Assume that there are no chain transfer reactions occurring.
- d) Now consider that a transfer agent was added to the reaction at a concentration of 30 mM. The rate constant of the chain transfer to the transfer agent (k_{trs}) is 1.5 M⁻¹s⁻¹. What is the new degree of polymerization?

a)

b) Initiation:

$$I_{\text{Co-Initiator}} + ZY_{\text{Initiator}} \xrightarrow{K} Y^{+}(IZ)$$
 fast
 $Y^{+}(IZ) + M \xrightarrow{k_{i}} YM^{+}(IZ)$ slow

Propagation:

$$HM_n^+(IZ)+M \xrightarrow{k_p} HM_nM^+(IZ)$$

Termination:

$$HM_nM^+(IZ^-)$$
 $\xrightarrow{k_t}$ HM_nMIZ

$$R_i = k_i [Y^+(IZ)^-][M] \text{ and } K = \frac{[Y^+(IZ)^-]}{[I][ZY]} \rightarrow R_i = k_i K[I][ZY][M]$$

 $R_p = k_p[Y^+(IZ)^-][M] \rightarrow [Y^+(IZ)^-]$ can be replaced \rightarrow steady state assumption $(R_i = R_t)$

$$R_t = k_t [Y^+(IZ)^-]$$

Therefore:

$$R_p = k_p \frac{R_t}{k_t} [M] = k_p \frac{R_i}{k_t} [M] = k_p \frac{k_i K[I][ZY][M]}{k_t} [M] = \frac{k_p k_i K[I][ZY][M]^2}{k_t}$$

c)
$$X_n = \frac{R_p}{R_t} = \frac{k_p[M]}{k_t} = \frac{2.5 M^{-1} s^{-1} \times 3 M}{0.005 s^{-1}} = 1500$$

d)
$$R_i = R_t + R_{trs}$$
 with $R_t = k_t [Y^+(IZ)^-]$ and $R_{trs} = k_{trs} [Y^+(IZ)^-][S]$

$$R_p = k_p[Y^+(IZ)^-][M]$$

$$X_n = \frac{R_p}{R_t + R_{trs}} = \frac{k_p[Y^+(IZ)^-][M]}{k_t[Y^+(IZ)^-] + k_{trs}[Y^+(IZ)^-][S]} = \frac{k_p[M]}{(k_t + k_{trs}[S])} = \frac{2.5 \times 3}{(5 \times 10^{-3} + 1.5 \times 30 \times 10^{-3})} = 150$$

- 3) For the synthesis of polystyrene, 5 g styrene (M=104.15 g/mol) is dissolved in 250 mL THF. The polymerization is initiated using sodium naphthalene. The concentration of anions initiating the polymerization ([M-]) is 0.01M. After 2h, the polymerization is stopped at a conversion of p = 0.95 by the addition of water.
- a) Illustrate the initiation, propagation and termination of the polymerization.
- b) Calculate the dissociation constant of sodium polystyrene, if $k_p^{\pm} = 0.3 \text{ L mol}^{-1} \text{ sec}^{-1}$ and $k_p^{-} = 75 \text{ L mol}^{-1} \text{ sec}^{-1}$.
- c) The same reaction is carried out in the presence of 0.05M sodium tetraphenylborate. The parameters of this polymerization are as follows: $k_p^{\pm} = 1.5 \times 10^{-3} \text{ Lmol}^{-1}\text{sec}^{-1}$ and $k_p^{-} = 5000 \text{ L.mol}.\text{sec}^{-1}$. Calculate the dissociation constant of sodium tetraphenylborate K_D sodiumtetraphenylborate.

a)

Initiation Na +
$$\left[\begin{array}{c} \\ \\ \\ \end{array}\right]^{-1}$$
 Na⁺ + $\left[\begin{array}{c} \\ \\ \end{array}\right]^{-1}$ Na⁺ + $\left[\begin{array}{c} \\ \\ \end{array}\right]^{-1}$ Na⁺ + $\left[\begin{array}{c} \\ \\ \end{array}\right]^{-1}$ Ph Ph Ph Ph Ph Ph Ph Ph

b)
$$R_{p} = \frac{-d[M]}{dt} = k_{p}^{app}[M^{-}][M]$$

$$\frac{-d[M]}{[M]} = k_{p}^{app}[M^{-}] dt$$

$$\ln \frac{[M]_{0}}{[M]} = k_{p}^{app}[M^{-}] t$$

$$p = \frac{[M]_{0} - [M]}{[M]_{0}} \rightarrow [M] = [M]_{0} (1 - p)$$

$$\ln \frac{[M]_0}{[M]_0} = \ln \frac{1}{(1-p)} = -\ln(1-p) = k_p^{app} [M^-] t$$

$$\ln(1-p) = -k_p^{app} [M^-] t$$

$$k_p^{app} = -\frac{\ln(1-p)}{[M^-]t} = -\frac{\ln(0.05)}{[0.01M] \times 7200s} = 41.6 \times 10^{-3} M^{-1} s^{-1}$$

Anionic polymer chain + counterion is assumed weakly dissociating salt:

$$\begin{split} k_p^{app} &= k_p^{\pm} + \frac{\left(k_p^{-} - k_p^{\pm}\right)[K]^{0.5}}{[M^{-}]^{0.5}} \\ K &= [\frac{(k_p^{app} - k_p^{\pm})[M^{-}]^{0.5}}{k_p^{-} - k_p^{\pm}}]^2 = [\frac{(41.6 \times 10^{-3} M^{-1} s^{-1} - 0.3 M^{-1} s^{-1})[0.01 M]^{0.5}}{75 M^{-1} s^{-1} - 0.3 M^{-1} s^{-1}}]^2 \\ &= 1.20 \times 10^{-7} \mathrm{M} \end{split}$$

c) Strongly dissociating salt was added to mixture:

$$k_p^{app} = k_p^{\pm} + \frac{\left(k_p^{-} - k_p^{\pm}\right)K}{[CZ]}$$

$$K = \frac{\left(k_p^{app} - k_p^{\pm}\right)[CZ]}{\left(k_p^{-} - k_p^{\pm}\right)} = \frac{(41.6 \times 10^{-3} M^{-1} s^{-1} - 0.0015 M^{-1} s^{-1})[0.05 M]}{(5000 M^{-1} s^{-1} - 0.0015 M^{-1} s^{-1})}$$

$$= 4.01 \times 10^{-7} M$$